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This paper presents the results of the analysis of resistive switching properties observed in a Au/(Ti—Cu)Ox/TiAlV structure with a

gradient distribution of Cu and Ti along the (Ti—~Cu)Ox thin film thickness. Thin films were prepared via multisource reactive mag-

netron co-sputtering. The programmed profile of the pulse width modulation coefficient during sputtering of the Cu target allowed

us to obtain the designed gradient U-shape profile of the Cu concentration in the deposited thin film. Electrical measurements of the

Au/(Ti—Cu)Ox/TiAlV structure showed the presence of nonpinched hysteresis loops in the voltage—current plane testifying a resis-

tive switching behavior. Results of optical, X-ray, and ultraviolet photoelectron spectroscopy measurements allowed us to elabo-

rate the scheme of the bandgap alignment of the prepared thin films with respect to the Au and TiAlV electrical contacts. Detailed

structure and elemental profile investigations allowed us to conclude about the possible mechanism for the observed resistive

switching mechanism.

Introduction

In recent years, significant development has been observed in
design, simulation, manufacturing, and characterization of
devices with the ability to switch between two resistance states,
namely low-resistance (LRS) and high-resistance (HRS) states,
the so-called resistive switching devices. This increase is due to
the possible application of such devices in the fields of neuro-
morphic [1-3] and chaotic systems [4,5], textile electronics [6],

and even quantum systems [7]. Resistive switching devices

have already found their place in the field of memory applica-
tions, especially in non-volatile memory such as resistive
random access memory (RRAM) [8-12] or conducting bridge
random access memory (CBRAM) [13]. Resistive switching
devices are usually made in the form of a metal-insulator—metal
(MIM) structure [14]. Commonly, such structures are fabri-
cated in the form of a stack of multilayers consisting of a very

thin (usually several nanometers) layer of insulating oxide and a
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much wider (several hundred nanometers) semiconducting (e.g.,
doped or nonstoichiometric oxide) layer. Materials used either
for insulating or semiconducting layers include HfO, [3,15-18],
ZnO [19,20], CuO [21-27], ZrO, [12], TapOs5 [28,29], and NiO
[3,30-32]. The most commonly used material in resistive
switching devices is TiO,—, [33-38]. In addition to the oxide
layers, the material used for metal electrodes plays another
crucial role in the resistive switching mechanism. Usually, ma-
terials such as Au, Ag, Ni, Ti, W, TiN, or ITO are used
[2,21,39]. Some examples of resistive switching behavior were
also found in structures based on nanowires [40] or nanotubes
[25,40], where the resistive switching device is characterized by
the presence of a pinched or nonpinched hysteresis loop in the
I-V characteristics in the DC plane.

Our previous works [41,42] have shown that an interesting al-
ternative to the well-known conventional structures, with a
multilayer stack of thin films with different electrical conduct-
ing and nonconducting properties described above, could be a
thin film the composition of which changes along its thickness.
So far, a memristive-like memory effect has been observed for
thin film structures with a so-called V-type [41] or linear [42]
gradient profile of the Cu distribution in (Ti—Cu)Ox thin films.
In the present paper, the results for (Ti—Cu) oxide semicon-
ducting thin films prepared with a U-shape distribution profile
of copper are presented. Experimental electrical measurements
performed using DC simulation showed wide nonpinched
hysteresis loops, indicating bipolar resistive switching proper-
ties. Additionally, the so-called forming process of switching
properties has been observed for the first cycle of the current-to-
voltage measurements. On the basis of the performed investiga-
tions, we suggest that the conducting filament switching is the
most probable mechanism. This is supported by investigations
of structure and surface properties using X-ray methods, UV
photoelectron spectroscopy, and cross-sectional elemental anal-
ysis.

Experimental

The deposition system and the method for the preparation of
gradient thin films have already been described in detail in [41-
45]. The thin films were deposited via reactive magnetron
co-sputtering, using two circular titanium targets (99.995%) and
one circular copper target (99.995%). All three targets were
sputtered simultaneously in an oxygen atmosphere of 99.999%
purity. The targets used in the process were 28.5 mm in diame-
ter and their thickness was 3 mm. The process uses magnetrons
with an unbalanced magnetic field set in a confocal configura-
tion vs the substrate. The target—substrate distance was 14 cm.
The unbalanced magnetic configuration system was applied.
Before the deposition process, the working chamber was

pumped to a base pressure of 1073 Pa. Thin films were sput-
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tered without additional intentional heating of the substrates
during the process. It can be assumed that the substrate temper-
ature did not exceed a temperature of 373 K. Each magnetron
was powered with a separate MSS2 power supply from Dora
Power System. The applied power supply allowed to obtain a
maximum power of up to 2 kW in the unipolar pulsed DC
mode. The power delivered to the magnetrons was independent-
ly controlled for each of the magnetrons [43]. DC pulses of the
magnetron power supply consisted of groups of unipolar sinu-
soidal pulses with a frequency of 140 kHz, whereas the power
supplied to the magnetrons was regulated by changing the width
of the groups of these pulses (pulse width modulation, PWM).
One of the biggest difficulties in the preparation of mixed
(Ti,Cu)Ox thin films with defined composition using co-sput-
tering of Ti and Cu targets is that titanium and copper differ
from each other in the sputtering yield in oxygen by a factor of
more than ten. Therefore, to increase the sputtering flux of tita-
nium species, two Ti and one Cu targets were sputtered in the
so-called simultaneous mode. The magnetrons were arranged in
a confocal configuration. To obtain a gradient distribution
of elements as a function of the thickness of the deposited
layers, magnetrons equipped with titanium targets were
supplied with a constant coefficient pwmr; = 100% throughout
the deposition process. On the contrary, the magnetron with
the cooper target was powered with a pwmc, coefficient
the value of which was changed from 60% to 10% and 0% for
the half of the deposition time, and then for the remaining half
of the deposition time, it was changed from 0% to 10% and to
60% (see Figure 8 below). The total time of deposition was
240 min. The determined values of the pwmr; and pwmc, coef-
ficients were selected on the basis of preliminary deposition

processes.

Due to the requirements of the different characterization
methods, thin gradient layers were deposited on silicon (Si),
amorphous silica (Si0,) and conductive metallic substrates
(Ti6Al4V). The resulting thickness of the prepared thin films
was about 610 nm as measured using a Talysurf optical profiler
(Tylor Hobson CCI Lite). Additionally, circular 1 mm gold
pads were evaporated on top of the prepared structure to allow
for electrical characterization. The average material composi-
tion of the gradient thin film was determined using X-ray
microanalysis employing an EDAX Genesis energy-dispersive
spectrometer (EDS) as part of the FESEM FEI Nova NanoSEM
230 scanning electron microscope. The content of Ti and Cu in
the entire volume of the thin film was estimated to be
48 atom % and 52 atom %, respectively. Additionally, the mate-
rial composition was determined without taking oxygen into
account, and no unintentional impurities were observed in the
coating. Structural properties were analyzed using X-ray

diffraction (XRD) and transmission electron microscopy
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(TEM). XRD patterns were obtained with a PANalytical
Empyrean PIXed3D powder diffractometer with Cu Ka radia-
tion (1.5406 A) and no diffraction peaks were observed testi-
fying the predominantly amorphous nature of the deposited thin
films. The microstructure of the (Ti—Cu)Ox films was further
analyzed with the aid of a TECNAI G2 FEG Super-Twin
(200 kV) transmission electron microscope equipped with EDS
attachment. The local chemical composition of the cross section
was also investigated to show the gradient distribution of Ti and
Cu as a function of the thin film depth. X-ray photoelectron
spectroscopy (XPS) studies were performed to determine the
chemical state of titanium and copper on the surface of the
mixed oxide thin films. A Specs XR-50 X-ray non-monochro-
matic excitation source with Mg Ka radiation (1253.6 eV) was
used. A Specs Phoibos 100 MCD-5 (5 single-channel electron
multiplier) hemispherical analyzer was used to collect photo-
electrons with a step size of 0.1 eV. All spectra were calibrated
with respect to the binding energy of the adventitious C 1s peak
at 284.8 eV. Ultraviolet photoelectron spectroscopy (UPS) was
performed using a non-monochromatic He I line (21.22 eV) ex-
citation source with a step size of 0.025 eV. A bias voltage of
—5 V was applied to the thin film sample during UPS measure-
ments to obtain a clear secondary electron cutoff. The binding
energies of the spectra were referred to the Fermi level (Ef) de-
termined from a cleaned reference Au sample. Measurement
results were analyzed with the aid of CasaXPS software. In the
case of XPS and UPS measurements, the results were averaged
over a certain surface area, that is, the beam diameter was
approximately 5 nm. To determine the type of electrical
conductivity, thermoelectrical Seebeck effect measurements
were conducted using a setup consisting of an INSTEC
chamber equipped with four electrical probes and two hot
chucks, an INSTEC MK1000 temperature controller, and an
INSTEC LN2-P pump. The optical transmission coefficient in
the visible part of the optical spectrum was measured using a
scientific grade CCD QE65000 spectrophotometer (Ocean
Optics). For DC current-to-voltage electrical measurements, a
Keithley SCS4200 semiconductor characterization system and a
M100 Cascade Microtech probe station were used. All elec-
trical measurements were made at controlled room temperature
(23 °C) and humidity (30% RH) in ambient air.

Results
Electrical properties

The resistivity of the thin film was determined to be
1 x 103 Q-cm. The type of electrical conductivity was deter-
mined on the basis of the sign of the thermoelectrical voltage.
The Seebeck coefficient measurements were made in the range
from 25 to 125 °C. The thermoelectrical voltage as a function of
the temperature difference measured between two opposite elec-

trical contacts is shown in Figure 1.
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Figure 1: Characteristics of the thermoelectrical voltage of a
(Ti—Cu)Ox thin film.

The Seebeck coefficient (+82.14 pV) testified the p-type
conductivity of the prepared gradient thin film. The p-type of
electrical conduction is often reported for Cu,O (or CuO)-based
thin films, while TiO, is an n-type oxide [46,47]. In the case of
the prepared mixed (Ti—Cu)Ox thin film, the result obtained
clearly testifies that holes are the major charge carriers.

DC measurements of the current-to-voltage characteristic were
performed in a transverse Au/(Ti—-Cu)Ox/Ti6Al4V configura-
tion system (Figure 2). The structure was powered by forcing a
constant current, which was swept from 0 to 60 nA, then
60 nA — 0nA — —60 nA and again —60 nA — 0 nA — 60 nA.

Depending on the direction of the applied current, the structure
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Figure 2: Direct current-to-voltage characteristics of the Au/(Ti—Cu)Ox/
TiAIV thin film structure. Arrows indicate the sequence of changes in
current forcing during measurements.
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was either in a high-resistance state (HRS) or in a low-resis-
tance state (LRS) at the same absolute value of the current.
When the direction of the current was changed to the opposite
polarity, the structure still “remembered” its high-resistance
state until, again, the direction of the current was changed and
the structure returned to its low-resistance state. Measurements
of the I-V characteristics were performed for several tens of
cycles.

LRS operation was reached when the forcing current was about
1.32 x 1078 A (or —1.74 x 1078 A) resulting in a structure resis-
tance of about 50 kQ. However, for the same value of forcing
current in the HRS, the structure resistance reached about
30 MQ. Resistance-to-forcing current characteristics with ob-

served switching behavior are presented in Figure 3.
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Figure 3: Switching characteristics for the Au/(Ti—Cu)Ox/Ti6Al4V thin
film structure as a function of the forcing current for both directions of
the current flow.

The results obtained from the 100 measured cycles testify a
very good reproducibility and good stability (retention) of the
prepared material (Figure 4). The ratio of the structure resis-

tance between the HR and LR states was approximately 6 x 102,

Optical properties

Figure 5 presents the transmission and reflection spectra of the
prepared thin (Ti—Cu)Ox film. As one can see, the prepared thin
film is quite transparent in the visible part of the optical spec-
trum. However, the average transmission does not exceed more
than 25% on average in the wavelength range of 500 to
1000 nm. In the infrared, the transparency of the thin film is
higher and reaches 40% on average. Visible maxima and
minima result from multiple interferences of the light reflected
from interfaces between air and thin film and thin film and SiO,

substrate. From the optical spectra, an optical bandgap width of
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Figure 4: Retention characteristics for the Au/(Ti—Cu)Ox/TiAlV thin film
structure.
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Figure 5: Transmission and reflection characteristics for gradient
(Ti—Cu)Ox thin film.

about 2.8 eV was determined for the allowed indirect transi-

tions using the Tauc method.

Structure and elemental composition

Surface properties

The oxidation state of copper on the surface of (Tig 45Cug 50)Ox
thin film was analyzed with the XPS Cu 2p core level spectrum
(Figure 6). The Cu 2p core level has split spin—orbit compo-
nents with ABE of 19.8 eV and an intensity ratio of Cu 2py,
and Cu 2ps3,, of approximately 0.5. It is possible to distinguish
Cu oxidation states taking into consideration not only the posi-
tion of the Cu 2p3/, peak but also the satellite features that
could be visible above the binding energy of this peak. Accord-
ing to Biesinger [48,49], the shake-up satellite peaks are present
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Figure 6: XPS spectra of the surface of (Tig 48Cug.52)Ox thin film: a) Cu 2p, b) Ti 2p, and c) O 1s core levels.

for samples containing Cu®* species but are absent for samples
containing only Cu® and Cu* species. Therefore, in the case of
the measured thin film, the binding energy of Cu 2p3,; and the
occurrence of well-visible satellite peaks at ca. 940-945 eV in-
dicate the presence of Cu®" species related to the CuO oxide
[48-50].

The XPS spectrum of the Ti 2p core level is presented in
Figure 6b. The position of the Ti 2p doublet and the binding
energy separation between Ti 2p3), and Ti 2p;» (marked in the
figure as AEy) equal to 5.8 eV testifies the oxidation state +4 of
titanium present at the surface. The ratio between the areas of
the Ti 2p3/, and Ti 2py/, peaks is equal to 2:1, which confirms
the presence of stoichiometric TiO, at the surface of

(Figure 6¢) was deconvoluted into three peaks related to lattice
oxygen (for TiO and CuO), hydroxy groups (OH™) and
adsorbed water molecules (HyO,q4).

The UPS spectrum of the (Tig 48Cug 52)Ox thin film is shown in
Figure 7. The position of the valence band maximum (VBM)
was determined from the extrapolation of the line fit to the
leading edge of the spectrum as marked in Figure 7a; it is
1.20 eV below the Fermi level (Eg). Taking into consideration
the bandgap energy of the thin films equal to 2.80 eV, the thin
film surface exhibits p-type conduction. The electron affinity
(%) of the thin film surface was equal to 2.41 eV and was calcu-
lated based on the relationship [51,52]:

(Tig 48Cug 52)Ox thin film. Furthermore, the O 1s spectrum x=hv—W—Eg, (D
A
a) (Tio s5CUo 5)Ox thin film | ©) ‘ Eunc
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We=a0tev |24
3‘ [ 1
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Figure 7: (a) Photoelectron spectrum of the valence band, (b) schematic energy diagram of the surface of the (Tip.48Cug 52)Ox thin film.
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where hv = 21.22 eV is the He (I) photon energy, W = 16.01 eV
is the width of the spectrum, that is, the energy difference be-
tween the VBM and the photoemission cutoff energy, and
E, =2.80 eV is the bandgap energy calculated from the trans-
mission spectrum. The work function (Wy) was determined to be
equal to 4.01 eV and was calculated as the difference between
the photon energy of the He (I) line and the position of the
cutoff energy of the photoemission (17.21 eV).

Cross-sectional analysis

The structural investigations included measurements of the ma-
terial composition using a scanning electron microscope (FEI
Inspected S50) with an electron dispersion spectrometer (EDS)
and the cross-sectional analysis of the prepared thin film struc-
tures using a transmission electron microscope (TEM) with
X-ray probe. With respect to the programmed U-shape of the
magnetron powering profile, the distribution of elements along
the thickness of the deposited (Ti—Cu)Ox thin films consist of
four parts. The first two parts include the decrease of copper in
a more rapid way at the beginning of thin film deposition to
ca. 80 nm and in a moderate way for the next ca. 200 nm of the
thin film thickness. After that, the content of copper in the thin
film structure begins to increase. The third part of the structure
includes the point at ca. 350 nm where the content of copper is
the lowest, while the content of titanium is the highest. After
that point, the copper content starts to increase for the next ca.
200 nm. The fourth and last part is the rapid increase in copper
content for the next ca. 80 nm. TEM and EDS (Figure 8) con-
firmed that a symmetric U-shaped gradient (Ti—-Cu)Ox of the
thin film was achieved. In addition, the structure of the pre-
pared thin film could also be divided into three areas: (1) a
polycrystalline area located from the surface to the near center
of the structure, (2) an amorphous area located from the center
to the near-substrate region, and (3) a void-rich area located
from the near-substrate to the substrate region. In the middle of
the structure there is a very thin (ca. 10 nm) region with differ-
ent structural properties and chemical composition. From the
performed TEM analysis (Figure 8) it can be interpreted as an
amorphous area. During the deposition process, the flow of
oxygen supplied to the working chamber was constant. De-
creasing the power supplied to the magnetron with the copper
target to 0% pwm results in the fact that all oxygen in the
chamber was consumed by the sputtered titanium targets. This
resulted in the deposition of dense amorphous TiO, just in the

middle of the gradient thin film.

Discussion

According to the construction, structure, and elemental
analyses, four different boundaries can be recognized in the pre-
pared thin film structure: Au/(Ti—-Cu)Ox, (Ti—Cu)Ox/TiO,,
TiO,/(Ti—Cu)Ox, and (Ti—-Cu)Ox/Ti6Al4V. To further analyze
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the switching mechanism of the observed memory effect, the
energy diagram in Figure 9 was proposed. The constructed
diagram assumes the presence of an additional wide TiO,
region in the middle of the prepared structure that corresponds
to the region of high Ti concentration in the central part of the
prepared (Ti—Cu)Ox thin film. The value of the work function
(5.4 eV) and the width of the optical energy gap (3.34 eV) for
TiO, were determined for a reference (about 100 nm thick)
amorphous TiO, layer, prepared in the magnetron sputtering
process using the same deposition system with the coefficient
pwmr; = 100% during the entire sputtering process. The analy-
sis allowed us to conclude that both interfaces created on the
border of Au or Ti6Al4V and the deposited (Ti—Cu)Ox thin film
were electrical ohmic contacts, because the value of the work
function of Au (DAu = 5.3 eV) or (OPTi6AI4V = 4.3 eV) is
greater than the value of the work function of the layer
(O(Ti—Cu)Ox = 4.01 eV). This conclusion is supported by the
symmetric shape of the I-V curves measured in both directions
of the forcing current (Figure 2).

Our previous works [41,42] have shown that structures based on
(Ti—Cu)Ox thin films with either linear or V-type gradient
profile of the Cu distribution along the thickness of the thin film
resulted in a pinched current-to-voltage behavior indicating a
memristive-like memory effect. In the present case, the
measured /-V curves showed a nonpinched hysteresis shape.
We believe that this effect could be due to the wide (about
420 nm) area of the middle region, rich in titanium oxide, which
resulted in a relatively high series resistance. In the discussed
case, switching from the high- to the low-resistance state could
be connected with the formation of filament-type conduction
paths that allow electrical charge carriers to flow between two
opposite contacts. Conductive filaments are often reported in
the literature as a mechanism responsible for the resistive
switching behavior occurring in conventional multilayer stack
constructions. Conducting paths are usually formed over ex-
tended defects in the thin film structure as a result of a thermal
mechanism. An important property of this effect is the occur-
rence of the forming process, which occurs when the structure
under test is first stimulated by an electric current (or voltage)

in a cyclic -V measurement.

Conclusion

The paper presents the results of investigations of the memory
effect observed in a thin-film structure with a U-shape gradient
profile of the Cu distribution prepared using magnetron co-sput-
tering. Structural, elemental, and bandgap analyses allowed for
a discussion of the observed switching effect of memory testi-
fied by the measured nonpinched /-V curves. It was concluded
that the observed highly repeatable resistive switching between
LRS and HRS (with a ratio of 6 x 10%) occurs due to the forma-
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Figure 9: Schematic illustration of energy level diagrams of the prepared Au/(Ti—Cu)Ox/Ti6AI4V structure. The change in material composition in the

film is marked by red lines.

tion of conducting paths in the (Ti—Cu)Ox thin film. The results
presented proved that thin films with a gradient element distri-
bution profile can be an interesting configuration for the prepa-
ration of devices utilizing memory effects.
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